1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
// Copyright (c) 2017-present PyO3 Project and Contributors
//! Python type object information
use crate::conversion::IntoPyPointer;
use crate::once_cell::GILOnceCell;
use crate::pyclass::{create_type_object, py_class_attributes, PyClass};
use crate::pyclass_init::PyObjectInit;
use crate::types::{PyAny, PyType};
use crate::{ffi, AsPyPointer, PyErr, PyNativeType, PyObject, PyResult, Python};
use parking_lot::{const_mutex, Mutex};
use std::thread::{self, ThreadId};
/// `T: PyLayout<U>` represents that `T` is a concrete representaion of `U` in Python heap.
/// E.g., `PyCell` is a concrete representaion of all `pyclass`es, and `ffi::PyObject`
/// is of `PyAny`.
///
/// This trait is intended to be used internally.
pub unsafe trait PyLayout<T: PyTypeInfo> {
const IS_NATIVE_TYPE: bool = true;
fn get_super(&mut self) -> Option<&mut T::BaseLayout> {
None
}
fn py_init(&mut self, _value: T) {}
unsafe fn py_drop(&mut self, _py: Python) {}
}
/// `T: PySizedLayout<U>` represents `T` is not a instance of
/// [`PyVarObject`](https://docs.python.org/3.8/c-api/structures.html?highlight=pyvarobject#c.PyVarObject).
/// , in addition that `T` is a concrete representaion of `U`.
pub trait PySizedLayout<T: PyTypeInfo>: PyLayout<T> + Sized {}
/// Marker type indicates that `Self` can be a base layout of `PyClass`.
///
/// # Safety
///
/// Self should be laid out as follows:
/// ```ignore
/// #[repr(C)]
/// struct Self {
/// obj: ffi::PyObject,
/// borrow_flag: u64,
/// ...
/// }
/// ```
/// Otherwise, implementing this trait is undefined behavior.
pub unsafe trait PyBorrowFlagLayout<T: PyTypeInfo>: PyLayout<T> + Sized {}
/// Our custom type flags
#[doc(hidden)]
pub mod type_flags {
/// Type object supports Python GC
pub const GC: usize = 1;
/// Type object supports Python weak references
pub const WEAKREF: usize = 1 << 1;
/// Type object can be used as the base type of another type
pub const BASETYPE: usize = 1 << 2;
/// The instances of this type have a dictionary containing instance variables
pub const DICT: usize = 1 << 3;
/// The class declared by #[pyclass(extends=~)]
pub const EXTENDED: usize = 1 << 4;
}
/// Python type information.
/// All Python native types(e.g., `PyDict`) and `#[pyclass]` structs implement this trait.
///
/// This trait is marked unsafe because:
/// - specifying the incorrect layout can lead to memory errors
/// - the return value of type_object must always point to the same PyTypeObject instance
pub unsafe trait PyTypeInfo: Sized {
/// Type of objects to store in PyObject struct
type Type;
/// Class name
const NAME: &'static str;
/// Module name, if any
const MODULE: Option<&'static str>;
/// Class doc string
const DESCRIPTION: &'static str = "\0";
/// Type flags (ie PY_TYPE_FLAG_GC, PY_TYPE_FLAG_WEAKREF)
const FLAGS: usize = 0;
/// Base class
type BaseType: PyTypeInfo + PyTypeObject;
/// Layout
type Layout: PyLayout<Self>;
/// Layout of Basetype.
type BaseLayout: PySizedLayout<Self::BaseType>;
/// Initializer for layout
type Initializer: PyObjectInit<Self>;
/// Utility type to make Py::as_ref work
type AsRefTarget: crate::PyNativeType;
/// PyTypeObject instance for this type.
fn type_object_raw(py: Python) -> *mut ffi::PyTypeObject;
/// Checks if `object` is an instance of this type or a subclass of this type.
fn is_type_of(object: &PyAny) -> bool {
unsafe { ffi::PyObject_TypeCheck(object.as_ptr(), Self::type_object_raw(object.py())) != 0 }
}
/// Checks if `object` is an instance of this type.
fn is_exact_type_of(object: &PyAny) -> bool {
unsafe { ffi::Py_TYPE(object.as_ptr()) == Self::type_object_raw(object.py()) }
}
}
/// Python object types that have a corresponding type object.
///
/// This trait is marked unsafe because not fulfilling the contract for type_object
/// leads to UB.
///
/// See also [PyTypeInfo::type_object_raw](trait.PyTypeInfo.html#tymethod.type_object_raw).
pub unsafe trait PyTypeObject {
/// Returns the safe abstraction over the type object.
fn type_object(py: Python) -> &PyType;
}
unsafe impl<T> PyTypeObject for T
where
T: PyTypeInfo,
{
fn type_object(py: Python) -> &PyType {
unsafe { py.from_borrowed_ptr(Self::type_object_raw(py) as _) }
}
}
/// Lazy type object for PyClass
#[doc(hidden)]
pub struct LazyStaticType {
// Boxed because Python expects the type object to have a stable address.
value: GILOnceCell<*mut ffi::PyTypeObject>,
// Threads which have begun initialization of the `tp_dict`. Used for
// reentrant initialization detection.
initializing_threads: Mutex<Vec<ThreadId>>,
tp_dict_filled: GILOnceCell<PyResult<()>>,
}
impl LazyStaticType {
pub const fn new() -> Self {
LazyStaticType {
value: GILOnceCell::new(),
initializing_threads: const_mutex(Vec::new()),
tp_dict_filled: GILOnceCell::new(),
}
}
pub fn get_or_init<T: PyClass>(&self, py: Python) -> *mut ffi::PyTypeObject {
let type_object = *self.value.get_or_init(py, || {
create_type_object::<T>(py, T::MODULE).unwrap_or_else(|e| {
e.print(py);
panic!("An error occurred while initializing class {}", T::NAME)
})
});
// We might want to fill the `tp_dict` with python instances of `T`
// itself. In order to do so, we must first initialize the type object
// with an empty `tp_dict`: now we can create instances of `T`.
//
// Then we fill the `tp_dict`. Multiple threads may try to fill it at
// the same time, but only one of them will succeed.
//
// More importantly, if a thread is performing initialization of the
// `tp_dict`, it can still request the type object through `get_or_init`,
// but the `tp_dict` may appear empty of course.
if self.tp_dict_filled.get(py).is_some() {
// `tp_dict` is already filled: ok.
return type_object;
}
{
let thread_id = thread::current().id();
let mut threads = self.initializing_threads.lock();
if threads.contains(&thread_id) {
// Reentrant call: just return the type object, even if the
// `tp_dict` is not filled yet.
return type_object;
}
threads.push(thread_id);
}
// Pre-compute the class attribute objects: this can temporarily
// release the GIL since we're calling into arbitrary user code. It
// means that another thread can continue the initialization in the
// meantime: at worst, we'll just make a useless computation.
let mut items = vec![];
for attr in py_class_attributes::<T>() {
items.push((attr.name, (attr.meth)(py)));
}
// Now we hold the GIL and we can assume it won't be released until we
// return from the function.
let result = self.tp_dict_filled.get_or_init(py, move || {
let result = initialize_tp_dict(py, type_object as *mut ffi::PyObject, items);
// Initialization successfully complete, can clear the thread list.
// (No further calls to get_or_init() will try to init, on any thread.)
*self.initializing_threads.lock() = Vec::new();
result
});
if let Err(err) = result {
err.clone_ref(py).print(py);
panic!("An error occured while initializing `{}.__dict__`", T::NAME);
}
type_object
}
}
fn initialize_tp_dict(
py: Python,
type_object: *mut ffi::PyObject,
items: Vec<(&'static std::ffi::CStr, PyObject)>,
) -> PyResult<()> {
// We hold the GIL: the dictionary update can be considered atomic from
// the POV of other threads.
for (key, val) in items {
let ret = unsafe { ffi::PyObject_SetAttrString(type_object, key.as_ptr(), val.into_ptr()) };
if ret < 0 {
return Err(PyErr::fetch(py));
}
}
Ok(())
}
// This is necessary for making static `LazyStaticType`s
unsafe impl Sync for LazyStaticType {}